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Biomolecular simulation 
based machine learning 
models accurately predict sites 
of tolerability to the unnatural 
amino acid acridonylalanine
Sam Giannakoulias1, Sumant R. Shringari1, John J. Ferrie2* & E. James Petersson1*

The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries to be 
explored in biological systems. However, the successful application of Uaas is often hampered by site-
specific impacts on protein yield and solubility. Although previous efforts to identify features which 
accurately capture these site-specific effects have been unsuccessful, we have developed a set of novel 
Rosetta Custom Score Functions and alternative Empirical Score Functions that accurately predict 
the effects of acridon-2-yl-alanine (Acd) incorporation on protein yield and solubility. Acd-containing 
mutants were simulated in PyRosetta, and machine learning (ML) was performed using either the 
decomposed values of the Rosetta energy function, or changes in residue contacts and bioinformatics. 
Using these feature sets, which represent Rosetta score function specific and bioinformatics-derived 
terms, ML models were trained to predict highly abstract experimental parameters such as mutant 
protein yield and solubility and displayed robust performance on well-balanced holdouts. Model 
feature importance analyses demonstrated that terms corresponding to hydrophobic interactions, 
desolvation, and amino acid angle preferences played a pivotal role in predicting tolerance of 
mutation to Acd. Overall, this work provides evidence that the application of ML to features extracted 
from simulated structural models allow for the accurate prediction of diverse and abstract biological 
phenomena, beyond the predictivity of traditional modeling and simulation approaches.

Expansion of the genetic code by incorporation of unnatural amino acids (Uaas) has helped to facilitate the study 
of biochemical phenomena which would otherwise be elusive1–4. Although Uaa incorporation is often used for 
the direct expression and purification of proteins with specific post-translational modifications, where the site 
would be dictated by biological relevance, Uaas are also used for photo-crosslinking, spectroscopic labeling, and 
biorthogonal conjugation, where there are many options for the location of the Uaa5–9. Various studies, includ-
ing our own, have demonstrated that the specific incorporation site of a Uaa has dramatic impacts on both the 
solubility and yield of the resultant mutant protein10–12. However, identification of positions which will tolerate 
the newly incorporated Uaa is nontrivial.

A predictive method which can rapidly and accurately identify sites for Uaa incorporation that maximize 
mutant protein solubility and yield could dramatically increase the use of Uaas in both academia and industry. 
Several computational efforts have focused on accurately predicting structural aspects of Uaa mutant proteins, 
such as amino acid rotameric or backbone orientations13–16. Others have concentrated on predicting interaction 
phenomena such as protein–protein binding affinities17,18 or energies of hydration19, but none have successfully 
predicted more complex phenomena such as Uaa protein yield and soluble fraction. We believe the lack of 
attention dedicated to these predictions stems from both the absence of a robust dataset that contains uniform 
information regarding a protein’s native structure, solubility, and yield and a lack of evidence supporting the 
predictability of such phenomena10. Ultimately, in lieu of an effective predictor, Uaa incorporation has often 
been restricted to sites where native residues possess similar chemical characteristics to the Uaa of interest20 or 
to mutationally tolerant sites identified prior to Uaa incorporation21. Alternative approaches employ empirical 
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screening of sites, often through the use of a green fluorescent protein (GFP) fusion reporter system to assess 
Uaa incorporation efficiency22,23. The former approaches are very limiting in the number of positions for Uaa 
incorporation, and the latter approach can require effort comparable to or greater than the effort needed for the 
eventual experiment with the Uaa-labeled protein. Thus, there is a great need for a facile approach which can 
identify sites in proteins that will tolerate mutation to Uaas. A demonstration of a simple predictive method may 
also encourage community wide data collection and result in a sufficiently large and varied dataset which would 
serve as a major step for improve Uaas predictability.

Previously, we collected the largest uniform dataset that captures the soluble yield, total yield, and soluble 
fraction for a singular unnatural amino acid (acridon-2-ylalanine, Acd) in a pair of protein targets10. During 
that investigation, we attempted to develop a simple heuristic descriptor which could predict the effects of Uaa 
incorporation on these measurables, but were unsuccessful. Acd, a blue wavelength fluorophore, was selected for 
this study because of its ability to be used as an intrinsically fluorescent Uaa, its ability to be assayed quickly and 
cleanly using gel-electrophoresis, and its many uses in in vitro assays such as fluorescence polarization and FRET 
experiments as well as recent applications in live cell imaging24–29. Acd has been shown to fulfill these functions at 
a variety of positions in proteins and exemplifies the problem of choosing an insertion site that is tolerated by the 
target protein. Our previous effort focused on investigating the ability of structure-independent bioinformatics-
based features (BLOSUM62 matrix, evolutionary conservation, measures of local hydrophobicity, etc.) to act as 
heuristic predictors of the soluble fraction for various Acd-containing mutants of the bacterial proteins LexA 
and RecA10. However, we demonstrated that none of the tested structure-independent bioinformatics features 
individually acted as reliable predictors of tolerability, as none displayed a Pearson or Point-Biserial correlation 
coefficient (R, calculated with SciPy) above 0.25 with the Acd mutant soluble fraction data for LexA or RecA 
independently, or for the combined set. Interestingly, the most useful features identified were categorical variables 
corresponding to the domain and secondary structure in which Acd was incorporated. Although these heuristics 
seemed to be relatively descriptive for LexA, which is composed of two isolated domains with different secondary 
structures (an α-helical N-terminal domain and a β-sheet C-terminal domain connected by a flexible linker), the 
trend did not hold for RecA, which comprises multiple mixed α/β domains. Lastly, we investigated the utility of 
using the scores of structures resulting from Backrub simulations of the Acd mutant proteins in Rosetta, which 
were again unable to act as effective predictors of tolerability to Acd10. Overall, this suggested that additional 
attention was required to identify predictive features for this dataset that could support generalization, prior to 
developing higher throughput methods for expanding the dataset.

Herein, we focus on establishing an accurate method for predicting Acd mutant protein soluble fraction 
(soluble yield divided by total yield). This metric helps to report on whether mutation of a residue to Acd will 
be tolerated and represents a class of experiments that has evaded predictive methods in the past. Previously, 
we demonstrated that the predictivity of Rosetta methods can be dramatically improved through the use of 
RCSFs30,31. RCSFs, or Rosetta Custom Score Functions, rely on generation of structural models in PyRosetta, 
which are subsequently scored with the Rosetta full atom score function (beta_nov_16)32, a linear combination 
of energetic score terms (Lennard–Jones potential, electrostatics, implicit solvation etc.) that serves an analogous 
role to forcefields in molecular dynamics (MD) simulations. Isolated score terms are then subsequently re-com-
bined through machine learning (ML) to generate an RCSF (Fig. 1A). Given the adaptability of RCSFs, we sought 
to investigate their utility in this problem that has previously proved difficult. First, we focused on determining 
if the constitutive energies of the Rosetta score function are more correlative than the structure independent 
bioinformatics terms we previously tested. We also wished to test the descriptive capacity of combining these 
terms through multiple linear regression (MLR). Subsequently, we sought to determine if the correlative nature 
of these features was unique to the energetic terms in Rosetta, by investigating a set of Empirical Score Terms 
(ESTs) which are based on contacts and structure independent bioinformatics. After identifying both Rosetta 
and EST features that demonstrated significantly improved correlation, we then used ML to train RCSFs and 
Empirical Score Functions (ESFs) and compare their ability to predict Acd mutant protein solubility and yield. 
Lastly, we performed feature importance analysis of the most predictive models from both the RCSF and ESF 
methods to see which features imbue predictivity in order to better understand our system. Overall, this effort 
demonstrates that such ML approaches are able to predict complex phenomena related to Uaa incorporation.

Methods
In order to simulate the Acd mutant LexA and RecA proteins, we first preprocessed and energy minimized the 
LexA and RecA protein structures (from PDB IDs 1JHH33 and 3CMW34, respectively) as detailed in the Starting 
Structures section of the Supplementary Information35. The energy minimized parent structures of LexA and 
RecA were then mutated to incorporate Acd at previously experimentally-tested positions using PyRosetta. The 
Rosetta amino acid params and side chain rotamer library files used to make Acd mutant proteins were those used 
in our previous work10. Following mutation to Acd, the structures were subjected to five independent cartesian 
FastRelax simulations (protocol to achieve low-energy protein backbone and side-chain conformations similar to 
the starting conformation through iterative stages of packing and minimization, with increasing repulsive weight 
in the scoring function over the course of the simulation), where only residues with a an alpha carbon to alpha 
carbon (C⍺-C⍺) distance within 8 Å of Acd were allowed to be refined31. These “local relaxes” allow for the sur-
rounding residues of the mutation site to accommodate the newly incorporated Acd residue and have previously 
been shown to be a good sampling scheme for protein design36. Every position in LexA and RecA which was 
mutated to Acd was also locally relaxed about the wildtype (WT) residue in order to generate the control scores.

The locally relaxed structures were scored with the beta_nov16 score function, selected for its previously 
demonstrated efficacy, and the energy terms from the score function were averaged over the five simulations on 
a per residue basis31,32,36. Score differences (deltas) were computed for the total score function and for each term 
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between the average weighted scores for the Acd mutant and the corresponding WT values. Features for RCSF 
training were then passed as the score deltas at the mutation site as well as the average of the score deltas of the 
surrounding locally relaxed residues (Fig. 1A).

In addition to computing Rosetta energy features from our structural models, we sought to construct a 
second, more generally applicable, feature set for ML comprised of contact-based terms10. Relevant contacts 
(pairwise atom distances < 4 Å) were computed from our structural models on an intra- and inter-residue basis 
using the biopython library37. The score deltas corresponding to the change in contacts upon mutation were 
used as features for training ESFs. The contact-based features were supplemented with structure independent 
bioinformatics features which provide information of evolutionary conservation and various measures of physi-
ochemical properties (BLOSUM matrices, conservation terms, measure of hydrophobicity etc.). Supplementary 
Table 3 describes each of the contact-based terms as well as the structure independent bioinformatics features 
in our ESF feature matrix.

The experimental dataset was prepared for ML by first assigning a response class to each sample based on the 
distribution of the dependent variable. In Fig. 1B, we present the spatial distribution of the Acd mutants and the 
effect they have on LexA and RecA solubility. Response class assignment was performed by identifying cutoffs 
which naturally balance the distribution of actives and inactives of the set. For soluble yield, total yield and 
soluble fraction the response classes were balanced at 520 nM, 1600 nM, and 39%, respectively. Next, to ensure 
that our ML models were not overfit or the product of specifically engineered hyperparameters, we created a 
large, well-balanced holdout dataset for validating our models. The complete dataset spans 51 datapoints where 
32 points are mutations in LexA and the remaining 19 are from RecA10. The holdout dataset (not seen by the ML 
algorithms during hyperparameter tuning) was constructed to represent 20% of the total dataset, comprising 
equal amounts of data from both proteins with a representative distribution of soluble fraction values. Members 
of the holdout datasets can be found in Supplementary Table 1 and on our GitHub (https://​github.​com/​ejp-​lab/​
EJPLab_​Compu​tatio​nal_​Proje​cts/​tree/​master/​RML_​ACD/​Datas​et).

Figure 1.   Schematic of the computational workflow for developing a Rosetta Custom Score Function or 
Empirical Score Function (A), spatial distribution and effect on soluble fraction of Acd mutants (B). LexA 
homo-dimer (left), RecA monomer (right). Note, red corresponds to soluble fraction percentage equal to or 
below 39%, and green above 39%.

https://github.com/ejp-lab/EJPLab_Computational_Projects/tree/master/RML_ACD/Dataset
https://github.com/ejp-lab/EJPLab_Computational_Projects/tree/master/RML_ACD/Dataset
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Given the large number of computed features to be used in ML, dimensionality was reduced by selecting 
important features with univariate statistical analysis with the SelectKBest module in scikit-learn38. The following 
ML algorithms were employed using the respective default parameters within scikit-learn to coarsely assess the 
effect of prediction accuracy as a function of the number of features: Logistic Regression (LOG), Kernel Ridge 
Regression (KRR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vec-
tor Machines (SVC), K Nearest Neighbors (KNN), Bernoulli Naïve Bayes (BNB), Gaussian Naïve Bayes (GNB), 
and Gaussian Process Classification (GPC)38. The optimal number of features were selected as the combination 
of features which showed the highest accuracy following stratified fivefold cross-validation, or CV5. The holdout 
datasets were validated by the aforementioned algorithms that were tuned using stratified CV5 in an exhaustive 
grid search. Finally, tuning parameters can be found in Supplementary Tables 10 and 11.

The metrics we have used to validate the performance of our models are accuracy, precision, recall, and the 
F1 score. Accuracy scores represent the ratio of correctly predicted observations (true positives and true nega-
tives) to the total number of observations. Precision is defined as the ratio of the number of correctly predicted 
positives to the total number of positive observations predicted. Recall is used to assess how many of the positive 
observations were identified and is given by the ratio of correctly predicted positives to total positives. Finally, 
the F1 score is the weighted average of precision and recall.

Results
In our previous study, analysis of the backrub simulated structures demonstrated that neither structural devia-
tions nor total energetic differences were correlative with any of the experimental parameters of interest10. To 
confirm that this was not an artifact of the sampling approach previously utilized, the experimental data from 
our previous study were simulated in PyRosetta as described in “Methods” section10 In this study, alpha carbon 
root mean squared deviation (C⍺RMSD) analysis was performed for locally relaxed structures and demonstrated 
that across the sets of independent simulations, each Uaa position converged to a singular structure in both the 
Acd mutant and WT simulations. The largest observed C⍺RMSD within a simulation set was 1.37 Å. Larger 
deviations of up to 4.07 Å were observed between the lowest energy member of a set of Acd mutant and WT 
simulations for a given position. Linear regression of C⍺RMSD values demonstrated no correlation with any 
of the dependent variables (all R < 0.3, Supplementary Figures 1–3). A similar analysis was performed using the 
difference in Rosetta total score in Rosetta energy units (REU) between the Acd mutant and WT simulations 
and again no correlation between REU and the dependent variables was observed (all R < 0.3, Supplementary 
Figures 4–6). This confirmed that traditional analyses such as RMSD and changes in total energy are insufficient 
in predicting these phenomena, as previously observed30,31.

Energetic components support descriptive modeling.  Next, we analyzed the correlations between 
Rosetta score deltas and the values from the experimental dataset and attempted to describe the system through 
linear regression. We observed that many of the score delta features were individually more correlative than any 
of the structure-independent bioinformatics terms analyzed in our previous efforts (Supplementary Tables 6 and 
7)10. Table 1 displays the ten features from the Rosetta score function that are most correlative with Acd mutant 
protein soluble fraction. We identified that the most correlative terms were energetic changes at the Acd incor-
poration site, demonstrating the importance of our structural modeling. Given the correlations of the independ-
ent Rosetta score terms, we constructed a set of multiple linear regressions (MLRs) in which we performed back-
wards selection to arrive at a small number of features which strongly describe the dependent variables. Table 2 
details the elements of the MLRs including the feature set, dependent variable, number of model features, R, and 
ƒ statistics for the models. The MLR analyses convey the ability for small numbers of Rosetta derived features 
to describe each protein subset for all three dependent variables above an R of 0.725. Additionally, we observed 
that unlike our prior study where the most predictive terms (protein domain and secondary structure) were not 
capable of being generally applied to both protein datasets, these MLRs are capable of effectively describing Acd 
mutant protein soluble yield, total yield, and soluble fraction in the combined dataset (Table 2).

Table 1.   The most correlative Rosetta energy features with Uaa mutant soluble fraction. The suffixes of _Site 
and _8A correspond to energies at the mutation site and the 8A contacting sphere respectively.

Top features RCSF R value Description

1 rama_prepro_8A 0.500 Energy of backbone phi and psi angles

2 fa_atr_Site 0.486 Attractive energy of inter-residue atoms

3 residue_total_score_Site 0.434 Linear combination of score function energies

4 fa_intra_atr_xover_Site 0.422 Attractive energy of intra-residue atoms

5 hbond_sr_bb_Site 0.349 Short-range hydrogen bond energies

6 fa_rep_Site 0.336 Repulsive energy of inter-residue atoms

7 lk_ball_iso_Site 0.334 Isotropic contribution to Solvation

8 hbond_sc_Site 0.328 Sidechain hydrogen bond energies

9 lk_ball_iso_8A 0.322 Isotropic contribution to Solvation

10 fa_intra_atr_xover_8A 0.311 Attractive energy of intra-residue atoms
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Detailed structural analysis provides basis for correlation.  Following our investigation of Rosetta 
features, we performed the same analyses for a set of ESTs, to determine if more generalizable terms could 
be used in a similar approach. Although the structure-independent terms were unable to achieve a Pearson 
correlation above 0.25, the new contact-based ESTs were able to achieve correlations up to R values of 0.503. 
Table 3 displays the ten ESTs that are most correlative with Acd mutant protein soluble fraction. Interestingly, 
we observed that the most correlative terms directly report on changes in contacts due to Acd incorporation. 
These results closely match the most correlative Rosetta terms as they also reported largely on the Acd mutation 
site. Moreover, we observed that EST MLRs (Table 4) were able to describe the soluble yield and soluble frac-
tion datasets similarly to the Rosetta terms MLRs (Table 2), but were significantly less correlative with the total 
yield dataset. Overall, we were highly encouraged that this approach might be generalizable beyond the use of 
Rosetta-specific score terms based on the correlations of the contact and bioinformatics-based terms computed 
from the PyRosetta generated mutant structures.

RCSF and ESF features produce accurate classifiers.  Since our Rosetta and EST sets were signifi-
cantly more correlated with soluble fraction over the previously explored structure-independent bioinformat-
ics terms, we next focused on assessing the maximal utility of these terms by attempting to classify positional 
tolerance of Acd mutation based on prediction of soluble fraction. Since the number of potential features is 
larger than the dataset, we reduced dimensionality through feature selection with the SelectKBest module in 
scikit-learn. An upper threshold of 10 features was set to avoid overfitting. Furthermore, we were interested in 
understanding which ML methods provide the most predictive power for each experimental value with these 
features, so we tested a wide variety of algorithms. Feature selection coupled with untuned model prediction 
showed varying results for the optimal number of features and those that were selected for each classification 
task can be found in Supplementary Tables 8 and 9.

Following feature selection, each feature selected ML model was tuned using exhaustive grid searching (strati-
fied CV5) to identify the optimal hyperparameters for the soluble yield, total yield, and soluble fraction models 
for both feature sets. First, we focused on generating RCSFs from Rosetta score terms and analyzed confusion 
matrices (Fig. 2) for RCSF cross validation and holdout prediction across every dependent variable. Addition-
ally, a dummy classifier is presented for a baseline comparison (Fig. 2A), which performed as expected given 
the stratified criterion with a prediction training accuracy of ~ 53% and training precision of ~ 50%. The soluble 

Table 2.   Summary statistics of RCSF multiple linear regressions.

MLR R Adj. R F statistic Prob. F statistic Number features

Soluble yield RCSF 0.899 0.872 16.86 2.15E−11 10

Total yield RCSF 0.947 0.940 77.20 6.21E−21 5

Soluble fraction RCSF 0.725 0.670 6.817 1.86E−05 7

Table 3.   The most correlative EST features with Uaa mutant soluble fraction. Definitions of features can be 
found in Supplementary Table 3.

Top features EST R Value Description

1 np_bb_sc_intra 0.503 Intra-residue backbone to sidechain nonpolar contacts

2 total_np_contacts 0.488 Total number of nonpolar contacts

3 np_sc_sc_inter 0.390 Inter-residue sidechain to sidechain nonpolar contacts

4 total_contacts 0.376 Total number of polar and nonpolar contacts

5 p_sc_sc_inter 0.321 Inter-residue sidechain to sidechain polar contacts

6 ASA 0.241 Accessible surface area

7 kD_cyclohexane_water 0.226 Measure of hydrophobicity

8 RSA 0.223 Relative accessible surface area

9 kD_vapor_to_water 0.219 Measure of hydrophobicity

10 kD_octanol_to_water 0.215 Measure of hydrophobicity

Table 4.   Summary statistics of ESF multiple linear regressions.

MLR R Adj. R F statistic Prob. F statistic Number features

Soluble yield ESF 0.903 0.794 4.427 2.06E−05 10

Total yield ESF 0.738 0.704 10.78 7.42E−07 5

Soluble fraction ESF 0.708 0.649 6.189 4.86E−05 7



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18406  | https://doi.org/10.1038/s41598-021-97965-2

www.nature.com/scientificreports/

yield RCSF (Fig. 2B) demonstrated a training accuracy of ~ 81% with a precision of ~ 88%. Very similarly, the 
total yield RCSF (Fig. 2C) was predicted at ~ 81% accuracy, but with a slightly lower precision of ~ 78%. Lastly, 
our soluble fraction RCSF (Fig. 2D), predicted with a training accuracy 85.4% and precision of ~ 81%.

The ability of the RCSFs to serve as practical tools for prediction of Acd mutant protein yield and solubil-
ity requires accurate prediction of never-before-seen data. Again, for comparison to random classification, a 
dummy classifier (Fig. 2E) is shown which predicted the holdout with an accuracy of 30% with 20% precision. 
Figure 2E–H show the confusion matrices for the prediction of the holdout datasets for every dependent vari-
able. Here, both the soluble and total yield RCSFs (Fig. 2F,G) demonstrated 90% holdout accuracy and perfect 
precision. The soluble fraction RCSF (Fig. 2H), predicted the holdout at 90% accuracy with ~ 83% precision.

To confirm the generalizability of generating predictive machine learned score functions from sets of correla-
tive terms, we created an identical set of ESFs from the ESTs. Similarly to the RCSF analysis, Fig. 3A–D displays 
confusion matrices for the ESF cross validation and holdout prediction across every dependent variable, along 
with dummy classifier metrics. The soluble yield ESF (Fig. 3B) demonstrated a training accuracy of ~ 71% with 
a precision of 75%. The total yield ESF (Fig. 3C) predicts at ~ 66% accuracy, but with a low precision of 60%. 
Additionally, our soluble fraction ESF (Fig. 3D), demonstrated a training accuracy ~ 66% and precision of ~ 78%. 
Moreover, analysis of the confusion matrices for the prediction of the holdout datasets of the dummy classifier 
(Fig. 3E) and ESFs (Fig. 3F–H) demonstrated that the ESFs performed similarly, albeit slightly less effectively 
than the RCSFs. The soluble yield ESFs (Fig. 3F) demonstrated 80% holdout accuracy and perfect precision, while 
the total yield ESF (Fig. 3G) and the soluble fraction ESF (Fig. 3H), both predicted the holdout at 70% accuracy, 
with 85.7% and 100% precision respectively. Table 5 displays a unified table of classification statistics for RCSFs 
and ESFs across all the dependent variables.

Structural accommodation and desolvation of Acd convey predictivity.  Finally, after demon-
strating that RCSFs and ESFs can be used to accurately classify Acd mutant protein soluble fraction, we focused 
on identifying which features were responsible for generating this predictive accuracy. Since extraction of 
model feature importance for nonlinear algorithms other than decision tree-based methods is not readily avail-
able in scikit-learn, we performed model feature importance analyses on LOG models (Fig. 4, Supplementary 
Tables 12–15). Analysis of the feature importance in the soluble fraction RCSF LOG model demonstrated that 

Figure 2.   Confusion matrices showing predictions from stratified CV5 and prediction of the holdout. For a 
binary classifier the top left represents true positives, the top right represents false positives, the bottom left 
represents false negatives, and finally the bottom right represents true negatives. The top row (A–D), shows 
cross validation scores for RCSFs and the bottom row (E–H), shows holdout prediction for RCSFs. Matrices A 
and E display the results of a dummy classifier using the stratified criterion, matrices B and F display the tuned 
soluble yield models, matrices C and G display the tuned total yield models, and matrices D and H display 
the tuned soluble fraction models. Note: BNB, KRR, and NuSVC are the Bernoulli Naïve Bayes, Kernel Ridge 
Regression, and Nu Support Vector classifiers respectively. Advanced metrics can be found in Table 5.
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Figure 3.   Confusion matrices showing predictions from stratified CV5 and prediction of the holdout. The top 
row (A–D), shows cross validation scores for ESFs and the bottom row (E–H), shows holdout prediction for 
ECSFs. Matrices A and E display the results of a dummy classifier using the stratified criterion, matrices B and 
F display the tuned soluble yield models, matrices C and G display the tuned total yield models, and matrices D 
and H display the tuned soluble fraction models. Note: POL3, QDA, and KNN are the Support Vector Degree 
3, Quadratic Discriminant, Analysis, and K Nearest Neighbors classifiers respectively. Advanced metrics can be 
found in Table 5.

Table 5.   Classification metrics of classifiers. CV5 corresponds to Stratified fivefold cross validation.

Metric Soluble yield best Total yield best Soluble fraction best

RCSF

CV accuracy 0.805 0.805 0.854

Holdout accuracy 0.900 0.900 0.900

CV5 precision 0.875 0.777 0.810

Holdout precision 1.000 1.000 0.833

CV5 recall 0.700 0.777 0.895

Holdout recall 0.857 0.875 1.000

CV5 F1 score 0.778 0.777 0.850

Holdout F1 score 0.923 0.933 0.909

ESF

CV accuracy 0.707 0.659 0.659

Holdout accuracy 0.800 0.700 0.700

CV5 precision 0.750 0.600 0.778

Holdout precision 1.000 0.857 1.000

CV5 recall 0.600 0.667 0.368

Holdout recall 0.714 0.750 0.400

CV5 F1 score 0.667 0.632 0.500

Holdout F1 score 0.833 0.800 0.571
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the most important Rosetta score terms were fa_atr_Site, omega_Site, fa_dun_rot_Site, fa_intra_atr_xover_8A, 
lk_ball_bridge_uncpl_Site, and fa_intra_elec_Site (Fig. 4A). These terms represent the energies associated with 
pairwise van der Waals attraction, the Acd residue specific backbone omega dihedral angle and Acd rotameric 
preferences, the intra-residue van der Waals attraction of the contacting sphere, the uncoupled bridging contri-
bution of the Lazaridis-Karplus solvation of Acd, and the intra-residue electrostatic energy of Acd respectively. 
The remaining selected terms corresponding to fa_dun_rot_8A, lk_ball_8A, and fa_intra_sol_Site were used to 
a significantly lesser extent than the most import feature (< 10% of fa_atr) and correspond to the internal energy 
of the sidechain from Dunbrack’s statistics of residues in the contact sphere, the anisotropic contribution of the 
Lazaridis-Karplus solution of the contact sphere and intra-residue solvation for the Acd site.

Analysis of the feature importance in the soluble fraction ESF LOG model demonstrated that all the selected 
features were similarly important, except for np_sc_sc_inter which had an increased importance. The remain-
ing features were blosum62_his, total_contacts, RSA, np_total, np_bb_sc_inter, and delta_t_d_m (all terms 
detailed in Supplementary Table 3). The majority of these terms (np_sc_sc_inter, total_contacts, np_total, and 
np_bb_sc_inter) are nonpolar contacts computed between the Acd and the surrounding residues derived from 
our PyRosetta modeling. RSA is the relative accessible surface area of the residue which is to be mutated to Acd 
and are also a function of the residue’s contacts39. The blosum62_his and delta_t_d_m are the BLOSUM values 
associated with the mutation site residue when mutated to histidine, and a measure of the change in peptide 
meting temperature vs glycine40,41. As was observed during feature correlation analysis, the selected RCSF and 
ESF features are similar and represent properties associated with the ability of a protein to accommodate the 
large aromatic sidechain of Acd.

Discussion
Our identification of Rosetta score terms and ESTs as correlative features with Acd incorporation tolerability 
based on soluble fraction and the combination of these terms through machine learning to generate RCSFs and 
ESFs has several key advantages over the methods previously employed. Previously, we hypothesized that posi-
tions which had low soluble fractions (Fig. 1B, amino acids colored in red) would show greater structural devia-
tions between the different local relax simulations in the Acd mutant simulations. Additionally, we expected that 
the Rosetta total score would reflect structural perturbation induced by Acd incorporation. Although we did not 
observe correlations between Acd mutant protein soluble fraction and either the global structural deviations or 
the total energy computed, we did see striking correlations for local physical interactions and energies associated 
with perturbations at and around the mutation site. These observations are consistent with our previous analyses 
predicting the change in energy of mutations at protein–protein interfaces and positions in peptides that imbue 
proteolytic resistance upon backbone thioamidation30,31. Moreover, this phenomenon was reflected in the ESTs 
as they too demonstrated that decomposed features were more correlative than their total feature counterparts 
(i.e. number of sidechain-sidechain nonpolar contacts rather than total number of contacts). Additionally, we 
observed that ESTs computed from our structural models were more correlative than the structure independent 
bioinformatics terms, supporting the fact that predictivity is rooted in the local structural changes more gener-
ally, and is not just attributable to Rosetta energies. The generalizability of this approach overall can also be sup-
ported by others who have used energy-based machine learning methods that are not RCSFs42–44. For example, 
Adeshina et al. minimized protein ligand complexes with Rosetta and used a subset of energies along side other 

Figure 4.   Normalized model feature importance from soluble fraction Logistic RCSF (A) and Logistic ESF 
(B). The most important feature has score 100 and each score less than 100 is used at that percent of the most 
important feature.
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features in an effort to reduce the false positive rate in ligand virtual screening42. Outside of the Rosetta energy 
function, Rauer et al. simulated molecules in various solvents using MD in order to predict hydration energies43. 
Taken together, these studies along with our investigations demonstrate the strong predictivity of energy-based 
and empirical ML models and support the idea that many different computational platforms can likely be used 
to generate predictions about Uaa incorporation if ML is applied to perturbation of local structural features.

Beyond delivering significantly improved predictive capacity, the structure-based features from this investiga-
tion were able to describe the important properties of each site as related to Acd tolerance. This is intriguing as it 
begins to uncover the mechanisms behind the clear differences in total yield, soluble yield, and soluble fraction 
observed, even when attempting to make conservative mutations (i.e. Phe-to-Acd) or in mutating the same resi-
due at different sites (i.e. LexA Phe 12 vs. LexA Phe 111). Consulting chemical intuition, we would hypothesize 
that positions which tolerate mutation to Acd would need to accommodate backbone and sidechain rotameric 
states capable of desolvating the bulky, aromatic Acd side chain. If they are incapable of doing so, the Acd side 
chain will be undesirably exposed to solvent or forced to clash with other residues. Indeed, this chemical intuition 
informed our previous attempts to determine correlations to individual properties10, and although these were not 
able to predict tolerability, they are nonetheless related to the top RCSF and ESF features. Many of the top ESF 
features correspond to hydrophobic contacts, solvent accessible surface area, and measures of hydrophobicity. 
At the same time, the top RCSF features correspond to van der Waals energies, peptide backbone angle prefer-
ences, and solvation energies. If we consider an example of mutation of Phe to Acd at position 12 (tolerated) 
versus at 111 (not tolerated), we can observe these features in action. At position 12, Acd is buried and adopts 
a clash free conformation. At position 111, while Acd is fully desolvated, it is too large and highly clashed with 
surrounding residues. A different example. where simply considering the identities of the native residues would 
have led to incorrect predictions of tolerance but our models allow accurate classification are Ser60 and Tyr98. 
Naively, one would expect a Tyr to Acd mutation to be better tolerated than a Ser to Acd mutation since Tyr is 
a bulky aromatic (hydrophobic) residue like Acd, and Ser is much smaller and considered to be polar. In this 
specific example however, the Ser mutation is tolerated, while the Tyr mutation is not. Fortunately, our models 
could accurately differentiate these two positions and inspection of the modeled structures allows chemical 
intuition to match the ESF and RCSF predictions. While position is 60 is solvent exposed, the Acd side chain 
is able to form many hydrophobic interactions and fill a small cleft. Position 98 is found at the dimer interface, 
and the Acd sidechain induces steric clashes due to its greater size than Tyr. These examples are rewarding, as 
they match our chemical intuition, demonstrating that this method provides models with a rationalizable basis 
for prediction as previously observed in our investigation of modified peptides30.

Comparison of the utilities of the RCSFs and ESFs specifically can be made based on training and holdout 
performance. Rewardingly, for all of our models, we observed only minor differences in the quality of the hold-
out prediction as compared to the training albeit with different predictive powers. Across the board, our RCSFs 
displayed training accuracies, precisions, and recalls routinely above 80% and translatability of those predictive 
capacities to the holdout. These data indicate good generalizability to new LexA and RecA data and show a strong 
ability to select for positives, which would tremendously enrich small scale screens for tolerated sites over the 
unbiased experimental methods described above. Our ESF models were demonstrably weaker predictors (train-
ing and holdout accuracies, precisions, recalls of 60–70%) than the RCSFs, but do show enrichment versus the 
dummy classifiers and translatability to the holdout, supporting the utility of their features.

With regards to model effectiveness in new protein systems, since we are using score deltas that are intrinsi-
cally normalized to the native structure, and the observed accurate testing on a diverse holdout set (sites with 
various protein primary, secondary, and tertiary structures) support the use of our models in predicting Acd 
tolerability in other systems. For other unique proteins, if the energy features computed from PyRosetta simula-
tions fall within the distributions of our feature vectors laid out in Supplementary Table 4, these models may also 
demonstrate utility. Nonetheless, the facile method described herein along with our previous two studies using 
RCSFs, provide strong evidence that the construction of custom scoring functions for prediction of a specific 
phenomenon is a superior strategy compared to the development of a singular generalized scoring function 
(forcefield) for a Uaa such as Acd. Ultimately, this investigation demonstrates that we have uncovered a method 
for predicting current datasets, suggesting that construction of a dataset that includes both different Uaas and 
multiple proteins may yield a generally predictive system of interest to the field.

Conclusion
Prior efforts to predict the parameters which reveal the tolerability of mutations to Uaas have been limited and 
thus far unsuccessful, leading researchers to use empirical methods. Herein, we focused on demonstrating that 
features, rooted in local structure computed from PyRosetta simulations, can serve as a basis for the development 
of predictive ML models. Uaa protein mutants of interest were simulated using PyRosetta yielding structural 
models which can be used to train RCSFs and ESFs that, for the first time, accurately predict Acd mutant protein 
soluble and total yield as well as soluble fraction with high accuracy. Given our recent development of Acd as a 
probe for imaging in living mammalian cells, we are excited about using the approach described here to train 
models for predicting well-tolerated labeling sites for imaging applications. The success of these models also 
has broad implications for the Uaa community and more generally for those interested in predicting biological 
phenomena via computation methods. The observed high cross validation scores, as well as generalizability, 
exemplified by accurate prediction of a diverse well-balanced holdout dataset, demonstrate that this modeling 
approach can identify key features for highly abstract experimental parameters in even small subsets of data. 
In the long term, we will continue to investigate the ability for RCSFs and ESFs to be used in conjunction with 
each other and additional features. Lastly, we have made our models for prediction of novel Acd mutant protein 
data available on our GitHub.
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Limitations and outlook
Although this methodology demonstrates that RCSFs and ESFs can accurately predict biological phenomena 
which elude more traditional approaches, the current study was performed on a small dataset (51 datapoints). We 
used a standard holdout percentage of 20%, corresponding to a low overall number of datapoints (10) for valida-
tion on never-before-seen data. It is likely that the models trained here are not generalizable beyond Acd and 
the LexA and RecA proteins, as this dataset is not expected to capture the diversity of protein structures across 
the proteome and other Uaas would have physical properties that are distinct from those of Acd so the relevant 
features for those Uaas were not selected here. Moreover, we encourage others adopting the RCSF method to 
consider the applicability of the Rosetta score function used for running simulations. For example, the betaNov16 
score function used here has been updated for improved ligand docking as RosettaGenFF/beta_genpot. While 
this change would not be expected to affect our results since no ligands were present, those attempting to perform 
similar studies in the presence of ligands should evaluate the currently available Rosetta score functions and 
select the appropriate score function depending on the task. Despite these limitations, the results herein and in 
prior reports demonstrate that RCSFs and ESFs are highly useful for producing interpretable ML models for 
predicting complex biological phenomena30,31.

Data availability
The datasets and analyses generated in the current study are included in this article as well as the Supplementary 
Information and are available from the corresponding authors on reasonable request. Codes have been made 
available on our lab GitHub at https://​github.​com/​ejp-​lab/​EJPLab_​Compu​tatio​nal_​Proje​cts/​tree/​master/​RML_​
ACD.
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